
AD-A241 106

D TIC
SEP2 5 13J 1

Transmission Characteristics of the

3COM ETHERLINK
11 NETWORK

0)te Gogopuo
Yosl0hngHngm

Uverstyu f Cen tral Mlia

Division of Sponsored Research IST-CR-90-7

91 924 0 73

DISCLAIMJI NOTICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

za. SECUaD.y CLA 5SCATIOU AuTf ORJ:1. 3 D.53u1 sTg* i3.~ o ASO

~ SCMEouss Approved for Public ?.elease;
2~/A Distribution is unlimited

'k P-5RsO5;ASG O7 A;D=zOa tT rVSER4"z~S) 5 0-.-o GAU~Z:Z.ot. REPORT k3RS

j IST-CR-90-7 IST- CR-90-7
68. t--zs O'_ FE.;VoX.o o;:.:ZarjC 16. o;F'csz i'.s ;S. ta.i o! TCIA~.O '.66

Institute for Simulation c
and Traininz Project Manager for Training Devices

6c. A0D555 (ESS s. 5,'rd Z;P Code) 7z~ss AOD;255.C. ... d ZIPCode)

12424 Research Parkway, Suite 300 12350 Research Parkway
Orlando, Fl, 32826 Orlando, FL 32826

Sa. ?.AIAE O; Fu';D:;G1S:SO.*SOW 8b. O;iiCZ $YAS.'5 9. PP.OCUR TIEWT USTRUVEUT IDEtjTIFICAT:O% NUASE-R
ORG A41TIO 10.1 aJP1ble)

DARPA/TTO N:61339-89-C-0043
6_1 ADDRESS (07.. State. and ZiP Code), 70. SOURCE OF PUZJDI:'.G ITJ:43ERS

FRtOG TAM PROJEC7T TASK WOK UN*171400 Wilson Blvd. !: NO NO NO. ACCESVON %0.
Arlington, VA 22209 1.

Transmission Characteristics of the 3COM1 ETHERLINK 11 Network
12. PERSONAL AUTHOR(S)

1.CSTCODES 18. SUBIECT TERMS (Continue on reverse if necessary and identify by block number)

19MBTAT(otnu nrvre iche:sa hnd identif by. blo uu osb eorehePG C)I

In hisreprtthe transmission characteristics of the 3Com Etherlink II adapter

Furtermreexperiments are conducted to examine the capability of replacing an
odpcesubmitted to tite .dapter buffer, with a new packet from the host

memoy, s wll'as the capability of stopping the transmission of a packet already
submtte tothe network adapter. The primary motivation of this investigation

is to understand the behavior of the 3Com EThERLIN(II adapter in a simulation
newrigenvironment-under real time constraints.

2 STRIBUTIONI/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICA1ION
NCLASSIFIEOIUNuMITED E3 SAME AS RPT 0 OTIC USERSa srri

22..NAM OPRESONSSLEINOVIOALfl.,&, ~ 22b TELEHONE (Inlude Aria Code) 122c OFFICE SYMBOL.
r~i YQ -g -1%0 -Y'Vm -ivo- -A

ODForm1473, JUN 86 Pre#;ousoditodareobsolete. SECURITY CLASSIFICATION 0; THIS PAGE

Transmission Characteristics of the
3Com ETHERLINK II NETWORK ADAPTER

Michael Georgiopoulos Yousuf Cheng-Hung Ma
Dept. of Electrical Dept. of Computer
Engineering Engineering

CAbstract
In this report, the transmission characteristics of the 3Com Etherlink
II adapter are examined. In particular, the transmission speed of the
adapter is investigated with data passed and without data passed
from host memory to the adapter buffer. Furthermore, experiments
are conducted to examine the capability of replacing an old packet,
submitted -to the adapter buffer, with a new packet from the host
memory, as well as the capability of stopping the transmission of a

packet already submitted to the network adapter. The primary
motivation of this investigation is to understand the behavior of the
3Com ETHERLINK H adapter in a simulation networking enviornment
under real time constraints.

('g:,, t,&s~ --

, P I

I

i.INTRODUCTIOk-MOTIVATION

The subject of this report is to understand the 3Com ETHERLINK II

adapter data transmission characteristics. The 3Com Etherlink Ii adapter is a

high performance network interface that links an IBM PC, XT, AT, PS/2 Model

25 or 30, or compatible pe -sonal computer to IEEE802.3 Ethernet networks. The

experiments conducted deal with the following items.

Experiments

1. Transmission speed of the adapter with data (packet) pass from remote memory

(host memory) to local memory (adapter buffer). The program TSTRX!.ASM was

used to achieve this goal.

2. Transmission speed ofthe adapter without data (packet) pass from remote

memory to local memory. To complete this task the program TSTRX2.ASM was

used.

3. The possibulty of stopping the transmission of a packet (data), already submitted

to the adapter. To perform this task the program TSTRX4.ASM was utilized.

4. The possibility of replacing an old packet (data), already submitted to the

adapter buffer, with a ,ew packet (data) from the host memory. Programs TSTRX6

and TSTRX7.ASM are used to achieve this goal.

The equilment used to conduct experiments 1-4 are i) two HP Vectra RS/20C

computers and ii) an HP 4972A LAN protocol analyzer. The motivation for ex-

periments 1 and 2 is to examine the maximum transmission speed capabilities of

a single network node (in this case the HP Vectra RS/20C). This information will

be useful when the time comes to overload a network of HPs in order to evalu-

ate, experimentally, the performance of the Ethernet protocol. The rationale of

IL Lm II 1immi ml

experiments 3 and 4 is that, in certain real-time applications, we want to have the

flexibility to replace old data with new data or stop a packet's transmission before

it is completed. This capability is beneficial in voice applications, where a new voice

packet (new data) replaces an unsuccessfully transmitted old packet (old data), or

in SIMNE]T applications where a new state update message (new data) replaces an

unsuccessfully transmitted old state update message (old data).

2. EXPERIMENTS 1 and 2

Experiment 1 examines the transmission speed characteristics of the adapter

when data is passed from the host memory to the adapter buffer. Data is passed

from the host memory on to the adapter buffer using DMA. The test environment is

set up to avoid uneccessary time delays due to program instructions, data generation

time and busy network cha nnel conditions. In particular, the following constraints

were imposed.

a. The data passed is a packet of fixed length.

b. The data generation time is zero.

c. The network channel is collision free (i.e., only one computer was allowed to send

data).

d. The program was shortened to eliminate uneccessary instructions.

The above conditions, a-d, allow us to measure more accurately the true trans-

mission speed of the adapter. Each time a packet is transmitted to the adapter a

transmission* command is issued .and the program gets into a waiting mode until

this packet is successfully transmitted. Three different packet lengths were tested

and statistical results from the HP LAN analyzer are reported in Tables 1-3. In

2

the first three columns of Tables 1-3 the peak or average traffic generated by the

HP computer (with data pass from host memory to adapter buffer) is shown for

eight different experiment runs. The next two columns give us the total number of

packets (frames) and the total number of bytes generated by the HP for the eight

different runs. Finally, in the last column the average interarrival time between two

cosecutive packet transmissions by the HP is depicted.

Peak or Peak or Peak or Total Total Packet elapsed
Average % Ave. kbits/s Ave. fims/s Frames Bytes Time (usec.)

1 18.40 1,826 2,536 25,335 2.280E+6 420
2 18.40 1,826 2,536 25,341 2.281E+6 380
3 18.40 1,826 2,536 25,329 2.280E+6 390

4 18.40 1,826 2,536 25,330 2.280;+6 380
5 '18.40 1,826 2,536 25,348 2.281E+6 420
6 18.40 1,826 2,536 25,351 2.282E+6 380
7 18.40 1,826 2,536 25,347 2.281E+6 3808 18.40 1,826 2,536 25,355 2.282E+6 380
..

Ave. 18.40 1,826 2,536 25,342 2.281E+6 392.5

Table 1 Packet length 78 bytes

Peak or Peak or Peak or Total Total Packet elapsed
Average % Ave. kbits/s Ave. frms/s Frames Bytes Time (usec.)

1..31...2,114.......1,716......17,140.............................570.....
1 21.31 2,114 1,716 17,140 2.640E+6 570
2 21.31 2,114 1,716 17,156 2.642E+6 570
3 21.31 2,114 1,716 17,154 2.642E+6 570
4 21.31 2,114 1,716 17,157 2.642E+6 580
5 21.31 2,114 1,716 17,156 2.642E+6 580
6 21.31 2,114 1,716 17,148 2.641E+6 570
7 21.31 2,114 1,716 17,157 2.642E+6 580
8 21.31 2,114 1,716 17,146 2.640E+6 570

Ave. 21.31 2,114 1,716 17,152 2.641E+6 573.75

Table 2 Packet length 142 bytes

3

I
Peak or Peak or Peak or Total Total Packet elapsed
Average S Ave. kbitsls Ave. fris/s Frames Bytes Time (usec.)

1 23.77 2,358 1,045 10,443 2.9457+6 960 -
2 23.77 2,358 1,045 10,447 2.946E+6 960
3 23.77 2,358 1.045 10,453, 2.948E+6 960
4 23.77 2,358 1,045 10,452 2.947E+6 960
5 23.77 2,358 1,045 10,444 2.945E+6 930
6 23.77 2,358 1,045 10,448 2.946E+6 960
7 23.77 2,358 1,045 10,447 2.946E+6 920
8 23.77 2,358 1,045 10,447 2.945E+6 920

---- ---

Ave. 23.77 2,358 1,045 10,448 2.946E+6 946.25

Table 3 Packet length 270 bytes

Experiment 2 is similar with experiment 1 except that at at each transmission

time there is no data (packet) pass from the host memory to the adapter buffer;

instead the packet (data) resides in the adapter buffer and a transmission command

is issued to the adapter. For experiment 2, as in experiment 1, we wait until the

packet is successfully transmitted before a new transmission command is generated.

The readings from the network analyzer are reported in Tables 4- for various packet

lenght sizes. A comparison between Tables 1-3 and 4-6 shows the obvious fact that

the transmission speed of the adapter with no data pass from host memory to the

adapter is approximately twice its transmission speed when data pass from host

memory to network adapter is involved.

Peak or Peak or Peak or Total Total Packet elapsed
Average % Ave. kbits/s Ave. frms/s Frames Bytes Time (usec.)

35.86 3,558 4,942 49,426 4.448E+6 220
2 35.86 3,558 4,942 49,432 4.449E+6 200
3 35.87 3,559 4,943 49,421 4.448E+6 190
4 35.87 3,559 4,943 49,417 4.448E+6 220
5 35.87 3,559 4,943 49,418 4.448E+6 190
6 35.86 3,559 4,942 49,404 4.446E+6 200
7 35.87 3,559 4,943 49,396 4.446E+6 190
8 35.87 3,559 4,942 49,410 4.447E+6 190

Ave. 35.87 3,559 4,943 49,417 4.448E+6 20C

Table 4 Packet length 78 bytes

4

Peak or Peak or Peak or Total Total Packet elapsed
Average % Ave. kbits/s Ave. frms/s Frames Bytes T,-me (usec.)

..

1 48.82 4,844 3,932 39,302 6.053E+6 260
2 48.82 4,844 3,932 39,295 6.051F+6 250
3 48.81 4,843 3,931 39,290 6.051E+6 260
4 48.81 4,843 3,931 39,301 6.052E+6 260
5 48.81 4,843 3,931 39,306 6.053=+6 250
6 48.81 4,843 3,931 39,294 6.051E+6 260
7 48.81 4,843 3,931 39,287 6.050E+6 250
8 48.81 4,843 3,931 39,303 6.053E+6 250

Ave. 48.81 4,843 3,931 39,298 6.052Z+6 255

Table 5 Packet length 142 bytes

Peak or Peak or Peak or Total Total Packet elapsed
Average % Ave. kbits/s Ave. frms/s Frames Bytes Time (usec.)

1..98 6,346.........2...814......28,122............................380.....
2 63.98 6,348 2,814 28,122 7.930E+6 380
2 63.98 6,348 2,814 28,135 7.934E+6 350
3 63.98 6,348 2,814 28,110 7.927E+6 350
4 63.98 6,349 2,814 28,114 7.928E+6 350
5 63.98 6,348 2,814 28,135 7.934E+6 350
6 63.98 6,348 2,814 28,126 7.932E+6 350
7 63.98 6,348 2,814 28,134 7.934E+6 350S 8 63.98 6,349 2,814 28,126 7.932E+6 360

Ave. 63.98 6,348 2,814 28,125 7.931E+6 355

Table 6 Packet length 270 bytes

3. EXPERIMENTS 3 and 4

This experiment has been carefully prepared to monitor every packet transmit-

ted. Two numbers are marked on each packet. Each number is a byte on the

packet data s-pace. The first number is the 14th byte and the second number is the

16th byte. The first number corresponds to the identity of the packet that requests

transmission via the adapter on to the network. A packet with identity x will be

called packet i. The difference between the second number and the first number

corresponds to the number of packets that have been submitted to the adapter for

transmission, whose transmission process has been interrupted by a stop command.

e5

This experiment is performed in a series of steps:

Step 1. If packet n (n 1) is generated by the HP computer, check the bits COL,

ABT, OWC or PTX of the NICSR-register. (The meaning of these bits is provided

in Appendix A).

Step 2. If any of the bits COL,ABTOWC is set (=1) or the bit PTX is reset (=0),

it means that the previous packet (i.e., packet n - 1) submitted to the adapter has

not been successfully transmitted yet. Then, issue a stop command and wait until

it becomes effective.

Step 3. When the stop command for packet n - 1 becomes effective submit packet

n to the adapter and issue a transmit command.

A packet that is submitted to the adapter for transmission waits for two distinct

time periods before its transmission is considered complete. The first time period

is the interval (t0,tlj and the second time period is the interval (ts,t 2J, where the

parameters to, t1 , t2 have the following Meaning:

1) to : The time of issuing a transmit command or beginning of the waiting for the

next retry. Any packet that suffers a collision returns to this point.

2) tj : The time at which packet transmission starts; this is the time at which the

adapter itarts placing the first bit of the packet on the network cable.

3) t2 : The time at which packet transmission ends; this is the time at which the

adapter places the last bit of the packet on to the network cable.

An important question to answer when we try to stop the transmission of a

packet, that has already been submitted to the adapter, is when the stop command

becomes effective. It was our belief, from the very beginning, that if the stop

comn' nd is issued in the time period [tht2l it becomes effective after t2; in other

6

words we believed that we could not stop the transmission of a packet whose bits

have already been placed by the adapter on to the network cable. On the contrary,

we thought that if the stop command was issued in the time period [fo, tl we could

stop the transmission of a packet already submitted to the network adapter. Due

to the above observations, we conducted two experments.

In experiment 3a, a computer (HP) sent ten packets with random interarrival

time. All packets were received by the network analyzer. We observe, from exper-

iment 3a, that the second number (16th byte) of packet arrivals 323 and 324 are

the same. This means that packet 02 (i.e., packet arrival 324) came prior to the

successful-transission of packet 01 (i.e., packet arrival 323) and we tried to stop

the transmission of packet 01. Since, we received packet 01 it seems that we were

unable to do so. But if we observe the time difference between the arrivals of packet

02 and 01 at the network ahalyzer (only 400 ps) the reason might have been that

packet 02 a!. v&d in the time period ft1, t2J of packet 01.

EXPERIMENT 3a

'1323 Elapsed 0:00:02.92126 Len 78 Filters 0 No error
Destination 02-60-8C-01-02-03 Source 02-60-8C-0F-EA-88

DATA 00
15 00-00-00-00-04-05-06-04-08-09-0A-0B-00-00-01-00-01

0324 Elapsed 0:00:02.92166 Len 78 Filters 0 No error
Destination 02-60-8C-01-02-03 Source 02-60-8C-OF-EA-88

DATA 00
15 00-00-00-00-04-05-06-04-08-09-0A-0B-00-00-02-00-01

#325 Elapsed 0:00:02.92211 Len 78 Filters 0 No error
Destination 02-60-8C-01-02-03 Source 02-60-8C-0F-EA-88

DATA 00
15 00-00-00-00-04-05-06-04-08-09-OA-0B-00-00-03-00-02

7

ki I I " I I I

So, we performed another experiment to investigate the possibilty of stopping a

packet's transmission, provided that the stop command is issued during the (to, til

time period of the packet. In this experiment (experiment 3b) a computer (source

02-60-8C-OF-EA-88) produced 100 packets for transmission with random interar-

rival time between packets. Furthermore, another computer (source 02-CF-IF-30-

27-95) sent packets continuously with random interpacket time and random packet

lenghts. Let us take three packet arrivals 16,22 and 23 corresponding to consecutive

packets (packets 01, 02 and 03) emanating from the same computer (source 02-60-

8C-OF-lEA-88). The second number (16th byte) for these packets is the same. This

implies that the packet 02 came priorto the successful transmission of the packet

QI and we tried to stop the transmission of the packet 01; similarly, the packet

03 came prior to the successful transmission of packet 02 and we tried to stop the

transmission of the packet 02. The difference in the arrival time between packets

03 and 02 is only 380 ps while the difference bettween the arrival times of packets

02 and,01 is approximately 0.25s. As a result, it is highly likely that the packet 03

cane during the (to, t11 interval of packet 02. According to the experimental results

we tried to stop the transmission of packet 02 and we were not successful. The stop

command was issued while packet 02 was in his [to, t1l waiting period. In conclusion,

from experinents 3a and 3b we deduce that we cannot stop the transmission of a

packet that has already been submitted to the adapter for transmission.

8

$16 7-laosed 0:00:02.61190 Len 78 =Uters a0..... 1:o ero
Destination 02-60-SC-O1-02-03 Souce 02-60-SC-3F-EA-8s

OATA 00
!5 00-00--00-00-04-05-06-04-08-09-0OA-0E-00-00-0l-00-O1

W1 7-lapsed 0:00:02.69440 Len 102 F:iters 0 N error
Destination F - Source 02-CF-IF-39-27-95

#is E-lapsed 0:00:02.69616 Len 102 F:Iers 0---------.Fo error
Destination FZ -F Source 02-CF-IF-30-27-95

*19g Elaused 0:00:02.69789 Len 102 Filters 0 Lo errr
Destination FTF~ Source 02-CF-2F-320-27-95

i20 Elapsed 0:00:02.70128 Len 102 Fiters 0 No errcr
Destination F - - Source 02-CF-2-7-30-27-95

12i E-lapsed 0:00:02-703-04 Men 102 F;iters: 0---------.!No error
Desti;nation FF- Source 02-C--3-0-27-95

#22 Elapsed 0:00:02.86253 Len 78 ;iters 0 No error
Destination 02-60-8C-01-02-03 Source 02-60-SC-OF-ZA-8B

DATA 00
15 00-00-00-00-04-05-06-04-0B-09-OA-OE=-00-00-02-00-0l

123 Elansod 0:00:02.86291 Len 78 F-iters 0 'No error
Destination 02-60-8C-01-02-03 Source 02-60-SC-OF--EA-88

DATA 00
15 00-00-00-00-04-05-06-04-08-09-OA-0s-00-00-03-00-Ol

Experiment 4 is similar, in certain respects, with experiment 3. For example,

the 14th byte of a packet (first number) indicates the pact .'s identity, while the

difference between this number and the 16th byte (second number) indicates the

number of packets whose transmission we attempted to stop. In experiment 4, we

do not try to stop a packet's transmission under any circumstances. Hence, the

first and the second number (14th and 16th bytes) in this experiment are always

the same. In experiment 4, if the identity of the packet is an odd number we wait

until the transmission of the previous packet is complete and then, we submnit the

packet to the adapter and we issue a transmit comnmand; the only exception to this

4

rule is peeit oi ror- which we do cot wait airc it is the -ist packet genreased by

the co--puter. If the identity of a packet is an evennne we do =A ait until

the completion of the previous packets transmnission, but we replac the old packe

withi the ven numbered packet and we issue a transmit command.- Our resuts are

depicted below.

#37; Elaosed 0:00:03.-43539 Len 78 raters 0o error
Destination 02-60-~C-01-02-03 Source 02-60-SC-0F- A-88

DATA 00
i5 00-00-0000 04-5-0-04-08-09-A-03-0

- O00-0o-o 0

133 Eapsed 0:00:03.43578 Len 156 =il-ers 0 o error
Destination 02-60-8C-01-02-03 Source 02-60-8C-0--F--8

DASA Oc-15 00-00-00-00-04-05-06-04;-08-09-0A-0B
-00- 00-0" -0 0-0 4

100 07-06-09-0A-03-0-00-64-00-64-11-12-1
3-14-15-1 6-1 7

#39 Elapsed 0:00:03.43626 Len 7S Filters 0 no error
Des-tination 02-60-SC-0102-03 Source 02-60-SC-0?-EA-88

DA.A 00
15 00-00-00-00-04-05-06-04-08-09-0A-0B

-00-00-05-00-05

-; - -... We. observe from the above results thni we receive packets 01 and 04 and we

miss packets 02 and 03. If the replacement action works and packet 02 came in time

to replace packet 01 then, we should have received packet 02 and not packet 01. If

instead packet 02 did not come in time to replace packet 01, we should have received

both packets (i.e., 01 and 02). Hence, the results indicate that packet 02 came in

time to replace packet 01, but the replacement action did not work. Furthermore,

since the time difference between the arrival times of packet 04 and 01 is only 400

10

PS we aV- co-.deat that pac&kt 02 arrived in the [to, ts time period of packet 01.

4. CONCLUSIONS'

We co=duzted some experiments to compute the maximum transmission speed

of the 3Com ETHERLINK I adapter with data pass and without data pass

from the host- (Vectm HP/20C co=mut;r) memory. We found that the adapter

transmission speed is doubled if no data pass from host memory to adapter buffer

is required. The complete results are shown in Tables 1-6.

We also investigated the possibilty of stopping the transmission of a packet that

has already beeen submitted to the network adapter (experiment 3). Furthermore,

we examined the possibility of replacing an old packet, already submitted to the

adapter for trzasmission, with a new packet from the host memory (expeiment

4). We found that, the 3Corn ETHERLINK II adapter does not allow either the

stopping of the transrnissi n of a pac:et or the replacement of a packet already

submittedto the network adapter.

APPENDIX A

Bit # Mnemonic Description

0 PTX Indicates packet transmitted with no error.
2 COL Indicates that the transmission collided at

least once with another station on the
network.

3 ADT Indicates the NIC aborted transmission
because of excessive collisions.

S1OwC Indicates that a collision occurred after a

slot tine (51.2 us).

- - --

nstxl is=- T~sprogram :±p~ysend pac.ket:. ,;ontin~. .Iy on 3C50J adapte:
using 3L interface. Each packet transmission has packet data
passed fro= the host =e-ory onto the adapter buffer.

** UOT: ** To alicow this program to end cleanly
added savvecs and fixvecs routines to preserve vectors that
could possibly be changed.
This alloys 3L interrupt hooks to be undone so 3L can be used

* in an executable program rat her than just a permanent driver.

!define 3L functions
xtrmn initaranaters: near

.xtrn Ini;tAdapters:near
extrn whoAmXi near
xtrn ResetAdapter:near
xtrn Rd.Rx--ilter: near

extrn WrRx.-ilter :near
-x:xtrn GetP-vData:near
xtrn SetiookAhead :near

extrn P'utr1xData : near

xtrn Set'-ine:near
extrn TimeOut:near

extrn Ticks:word

,xtr-n Srand:near
extrn Rand:nearJxtrn Waiti;ng:near

ublic RxProcess
public 7_xitRcvlnt

so these'll be in nap for debugging
public argstr, crlf, retsav, pkthd, wbf, xmntpk, fnprmt
sublic xmitl, rcvsome, dowho, savvecs, fixvecs, dmprt, prx, wtoa

if equ Oah
rr egu Odh

insec equ 60d

U4XMIT equ lood ;total packets transmitted /Ma
PAITIME equ 16d ;urnit in usec. /Ma
kANDRANGE equ lid ;upper limit of random number /Ma
MODUNUM equ lad ;modular number with count /Ma
-IrIMElO equ lad ;interframe tine w/pass 64 data bytes /Ma
jIME20 egu id "1 if i 128 " " /Ma
'TIME3O equ id it If I 256 " /Ma

Sprint macro strloc ;print string at strioc
local strioc
push cx
lea dx,strloc
nov ah,a9h
mnt 21h
POP cx
endm

@Icbdin macro ;get kbd char in al
nov ah,8

vkbdchk nacro :check for kbd char
nov ah,Obh
nt 21h ;returns al: O-nokey, ff-keyhit
endm

prx macro len, dat ;print hex data in word dat, len = I to 4
;don't put data in ax

nov ax,len
push ax
nov ax,dat
push ax
call prx
add sp,4
end=

d-rurt macro buf,adr,len ;hex dump a data area
=ov ax,len
push ax
mov ax,adr
push ax
mov ax,buf
push ax
calr dmprt
add sp,6
endm

:ODE GROUP DATA, RCODE, STACK

DATA SEGMENT WORD PUBLIC

,DOS driver init request header format
ini_hd struc

db 23 ;hdr len
db 0
db 0 ;init cmd

,tat dw 0
db 8 dup (0)
db 0 ;num units (not used)

cdend dd 0 ;code end set here
irgo dw 0 ;arg offset
irgs dw 0 ;arg segment

db 0
ni_hd ends

--- adapter parameter setup string--------------------
* this would come from 'device=' on real driver init
irgstr db "bs.sys /A:300 /D:1 /I:3",lf

;----.fake driver init request header for InitParameter input
;h ini-hd <,,,,,,,offset CODE:argstr,seg CODE,>

vectsv dd 22h dup (0) ;save all vectors so we can cleanup

:WhoAmI adapter info structure
ad-info struc
ea db 6 dup(O) ;enet addr
ierl db 0 ;major ver

A-2

aILyp db t ;jddpter Lype
astat db 0 ;adapterstatus
ufrs db 0 ;buffer fl s
ixb db 0 ;number of xmit buffers
sxb dw 0 ;xmit buffer size
xMtc dd 0 ;xmit count
XMte dd 0 ;xzit errs
xmtto dd 0 ;xmit timeouts
rcvc dd 0 ;rcv count
rcvbc dd 0 ;bcast rcv count
rcve dd 0 ;rcv eiTs
rtc dd 0 ;retry count
xfmd db 0 ;xfer mode flags

.=d db 0 ;wait mode flags
extp dw 0 ;extension pointer
ad.info ends

;program messages
crlf db cr,!f,'$"

2Vmsg db "tst3l load point: $"
!.msg db "InitParameters returns: $"
!A-sg db "InitAdapters returns: $"
-Asg db "WhoAmI returns: $"
RlFmsg db "WrRxFilter returns: $"
LAmsg db "SetLookAhead returns:
Gtmsg db "GetRxData error return: $"
7PMsg db lf,'Zero length packet",cr,lf,'$"
PAnsg db "Press any key to continue",cr,lf,'$'
RSmsg db "Starting packet receive.., any key to end",cr,lf,'$'
REmsg db "Stopping receive",cr,lf,'$'
:Lmsg db :$ "
HFmsg db " - "

?Nmsg db "Select function, r for recv, t for xmit: ",''
X~msg db "Sending I packet",cr,lf,'$'
XRmsg db "PutTxData returns: $"

)Mreq db "Transmision of packets has four options:" ,cr,lf
db " 0. Exit",cr,lf
db " 1. Transmit 78 byte packets without data pass.",cr,lf
db " 2. Transmit 142 byte packets without data pass.",cr,lf
db " 3. Transmit 270 byte packets without data pass.",cr,lf
db " 4. Transmit the longest packet without data pass.",cr,lf
db cr,lf
db "Enter your choise: ",'$' ;Ma

XMmsgl db "Sending 78 bytes packets for 10 seconds sampling w/D" ;Ma
db cr,lf,'$' ;Ma

XMmsg2 db "Sending 142 bytes packets for 10 seconds sampling w/D" ;Ma
db cr,lf,'$' ;Ma

XMmsg3 db "Sending 270 bytes packets for 10 seconds sampling w/D" ;Ma
db cr,lf,'$' ;Ma

XMmsg4 db "Sending long packets for one minite without data pass" ;Ma
db cr,lf,'$' ;Ma

• 00msg db "WhoAmI DATA -",cr,lf,'$'

i 01msg db ". enet addr : "
A-3

Sotms:q d typ Vr

WO6=sg db " adapter type 5"
'J07Nisg db " adapter status
ID~msg db " buffer flags

WO9=sg db " number of xmit buffers :"
'-l~nsg db " xriit buffer size :$o
1i15.sa. db It xmit count :$

v;12mnsg db so xmit errs S
W13=1sg db It xfit timeouts :
414MSg db so rcv count 5"

.llISmsg db is bcast rev count
Wl6msg, db 99 rcv errs 5"
*ll7msa db if retry count 5"
4'l8isg db " xfer =ode flags 5"
Wibisg db wait m6 de flags 5"
t',120=sg db " extension pointer 5"

; misc parameters
retsav dw ?
;egval dw,
:off dw ?
errcd db 0

)klock db 0
pklen dw 0
iokerr dw 0
,kcnt dw 0
dkcount dw 0
"avax ?

;receive buffer
*)kthd db, 32 dup(0) ;packet header portion for SetookAhead
:pktdat db 1500 dup(0) ;remainder of pkt buffer /closed by Ma

;WhoAmI buffer
.,bf a nf <>;WhoAmI buffer

**************ready packet data ************

-transmit 64 data byte packet
xmtpk label byte
'jesta db 02h,60h,8ch,01h,02h,03h ;arbitrary dest addr
;orca db OOh,Ooh,Ooh,ofh,Ofh,Ofh ;source addr - fill from who ea
plen db 0,64 ;packet length
pdata db OOh,00h,00h,OOh,04h,05h,06h,07h

db - 08h,09h,Oah,Obh,Och,odh,Oeh,Ofh
db lbh,llh,12h,13h,l4h,l5h,l6h,l7h
db 18h,19h,lah,lbh,lch,ldh,leh,lfh
db 20h,21h,22h,23h,24h,25h,26h,27h
db 28h,29h,2ah,2bh,2ch,2dh,2eh,2fh
db 30h,31h,32h,33h;34h,35h,36h,37h
db 38h,39h,3ah,3bh,3ch,3dh,3eh,3fh

.cplen dw $-xmtpk ;packet len

~~~ ~~ ready packet data **~*********

A-4



.mItpR2 iabel byte
desta2 db 02h,4SGi,8ch,0lh,02h,03h ;arbitrary dest addr
sorca2 db O0h,00h,O0h,ofh,Ofh,Ofh ;source addr - fill from who ea
3len2 db 0,128 ;packet length
*)dat~t2 db 00,h,OOh,OOh,b,04h,05h,06h, 07h

db 08h,09h,oAh,Obh.och,Odh,Oeh,Ofh
db l~h,llh,l2h,13b,14h,l~h,l6h,17h
db 18h,19h,lah,lbh,lch,ldh,leh,lfh
db 20h,21h,22h,23h,24h,25h,26h,27h
db 28h,29h,2ah,2bh,2cb,2dh,2eh,2fh
db 30h,31h,32h,33h,34h,35h,36h,37h

db 38h,39h,3ah,3bh,3ch,3dh,3eh,3fh

db OOh,Olh,02h,03h,04h,05h,06h,07h
db 08h,09h,Oah,Obh,och,Odh,Oeh,Ofh
db 10h,llhi,12h,13h,14h,15h,16h,711

db 20h,211i,22h,23h,24h,25h,26h,27h
db 28h,29h,2ah,2bh,2ch,2dh,2eh,2fh
db 30h,31h,32h,33h,34h,35h,36h,37h
db 38h,39h,3ah,3bh,3ch,3dh,3eh,3fh

.:plen2 dw $-Yxmtpk2 ;packet len

~~~ ~ready packet data ************

;transmit 256 data byte packet
'%mtpk3 label byte
Iesta3 db 02h,60h,8ch,Olh,02h,03h ;arbitrary dest addr'
sorca3 db 00h,O0h,ooh,Ofh,Ofh,Ofh ;source addr - fill from who ea
Plen3 db, 0,255 ;packet length
)data3 db - 0h,00h,OOh,00h,04h,05h,06h,07h

db 08h,09h,oah,Obh,Och,Odh,oeh,Ofh
db IOh,llh,l2h,l3h,l4h,l5h,l6h,l7h
db 18h,19h,lah,lbh,lch,ldh,leh,lfh
db 20h,21b,22h,23h,24h,25h,26h,27h
db 28h,29h,2ah,2bh,2ch,2dh,2eh,2fh
db 30h,31h,32h,33h,34h,35h,36h,37h
db 38h,39h,3ah,3bh,3ch,3dh,3eh,3fh
db O0h,Olh,02h,03h,04h,05h,06h,07h
db O8h,09h,Oah,Obh,Och,Odh,oeh,Ofh
db l~h,1lh,l2h,13h,l4h,l5h,l6h,l7h
db 18h,19h,lah,lbh,lch,ldh,leh,lfh
db 20h,21h,22h,23h,24h,25h,26h,27h
db 28h,29h,2ah,2bh,2ch,2dh,2eh,2fh
db 30h,31h,32h,33h,34h,35h,36h,37h
db 38h,39h,3ah,3bh,3ch,3dh,3eh,3fh
db 00h,Olh,02h,03h,04h,05h,o6h,07h
db 08h,09h,Oah,obh,Och,Odh,oeh,Ofh
db l~h,llh,l2h,l3h,l4h,l5h,l6h,l7h
db 18h,19h,lah,lbh,lch,ldh,leh,lfh
db 20h,21h,22h,23h,24h,25h,26h,27h
db 28h,29h,2ah,2bh,2ch,2dh,2eh,2fh
db 30h,31h,32h,33h,34h,35h,36h,37h
db 38h,39h,3ah,3bh,3ch,3dh,3eh,3fh
db O0h,Olh,02h,03h,04h,05h,o6h,07h
db 08h,09h,oah,Obh,Och,Odh,Oeh,Ofh
db 10h,llh,12h,13h,14h,15h,16h,17hi
db 18h,19h,lah,lbh,lch,ldh,leh,lfh

A-5

db 30h,31h, 32h, 33hJ-lfl,)',J611, 3!h
db 38h,39h,3ah,3Jbh,3ch,3dh,3eh.31h

xplen3 dw $-xmtpk3 ;packet len

;tr ansnit largest packet, new data area/Ma

*x6'tpki label byte
,destal db 02h,60h,8ch,Olh,02h,03h ;arbitrary dest addr
.,sorcal db O0hO0h,00h,0fh,Ofh,0fh ;source addr - fill from who ea
.plenl diw 0,1500 ;packet length
;pdatal dw '187 dup (0001h,0203h,0405h,0607h,0809h,OaObh,DcOdh,Oeofh)

dw Offllh,Offl~h

;xplenl dw $-xritpkl ;packet len

hou db 0
hour db 0
sec db 0
count dw 0
funcnum db 0
sumrd dw 0

DATA ENDS

STACK SEGMENT STACK

STACK ENDS

RCODE SEGMENT WORD PUBLIC

assume cs:code, ds:code

main routine

tstrxl proc near

soy ax,CODE
noy ds,ax
soy es,ax

rnov ax,cs

soy segval,ax
* oy toff,offset CODE:tst3l ;Ma

soy toff,offset CODE:tstrxl ;Ma

@print TVmsg ;print prog load addr
@prx 4,segval
@print CLmsg
Oprx 4,toff
@print crlf
@print PAmsg :wait for key
@kbdin ;... get it

call sayvecs ;save a bunch pf vectors for later

soy bx,offset CODE:ih ;fake driver init request buffer
t,-6

c7alIl In.;it'arameter!;

001/ retsav,ax

Optint IPmsg.
Oprx 4,retsav
@print crlf
soy ax,-retsav
or ax,ax
jz init_ok
nov al,l
imp oout

into:moir di,offset CODS:RxProcess

call InitAdapters

nov retsav,ax

@print iAnsg
@prx 4,retsav
@print crlf
nov ax,retsav
or ax,ax
jZ iaok
nov errcd,2
jmp uninit

ia-ok:

call dowbo ;call WhoAnI and list result

SetookAhead is not required but added for reference
xor dl,dl ;adapter 0
nov cx,32 ;LookAhead size

call SetookAhead

501/ retsav,ax

@print LAnsg
@prx 4,retsav
@print crlf
nov ax,retsav
or ax,ax
jZ la-ok
nov eircd,4'
jmp uninit

laok:

nov pkcount,0
xor dl,dl ;adapter 0

,, ov ax,Olh ;set filter board address
soy ax,Och ;set Lilter to promis/bcast

call WrRxrilter

A-7

Oprint WFmsg
Oprx 4,retsav
8print crlf
Mov ax,retsav
or ax,ax
jz wfok
mov errcd,5
imp uninit

wfok:

;do xmit or rcv per user input
fnprmt:

@print FNmsg
@kbdin ;get input selection
push ax
@print crlf
pop ax
cmp al,'r'
je dorecv ;Ma
je jdorecv ;Ma
cop al,'t'
je doxmt ;Ma
jne fnprmt ;Ma

jmp fnprmt ;Ma
jdorecv: jmp dorecv ;Ma

Joxmt:
@print XMreq Ma
@kbdin ;Ma, get input selection
push ax ;Ma
@print crlf - ;Ma
pop ax ;Ma
cmp al,'l' ;Ma
je doxml ;Ma, transmit 64 byte packets with data pass
cmp al,'2' ;Ma
je jdoxm2 ;Ma, transmit 128 byte packets with data pass
cmp al,'3' ;Ma
je jdoxm3 ;Ma, transmit 256 byte packets with data pass
cmp al,'4' ;Ma
je jdoxm4 ;Ma, transmit long packets without data pass
cmp al,'0' ;Ma
je juninit ;Ma, end of transmision
jne doxmt ;Ma
mov errcd,al ;Ma
)mp uninit ;Ma

jdoxm2: jmp doxm2 ;Ma
jCIoxm3: imp doxm3 ;Ma
jdoxm4: imp doxm4 ;Ma
juninit: jmp uninit ;Ma

transmit 64 data byte packet continuously with data pass for 10 seconds
sampling.

doxml: @print XMmsgl ;Ma

A-8

ioxml1 ('pr inl t X.mq I ;M3

nov cOuntO ;Ma, clcar coun.
nov funcnun,l ;Ma, run function number 1
nov cx,NUMXMIT

r.epXI:
push cx ;Ma
inc count ;Ma
nov ax,count ;Ma
mov byte ptr pdata[OI,ah ;Ma, mark packet number on high
nov byte ptr pdata(1),al ;Ma, .and low byte

doXmitl: call Xmitl ;Ma, transmit one "canned" packet

POP cx
loop repXl
call dowho ;Ma, list W'hoAmI result
mow ax,sumrd ;Ma
xor dx,dx
mow bx,NIJNXMIT
div bx
mov bx,ax
@print RDImsg
@prx 4,bx
@print RDFmsg
@prx 4,dx
@print crlf
imp doxmt ;Ma

transmit 128 data byte packet continuously without data pass for 20 seconds

sampling.

doxm2: @pr~int XMmsg2 ;Ma

nov count,0 ;Ma, clear count
nov funcnum,2 ;Ma, run function number 2
nov cx,NUMXMIT

repX2:
push cx
inc count ;Ma
mov ax,count M
mov byte ptr pdata2[0],ah ;Ma, mark packet number on high

* ov byte ptr pdata2[lj,al ;Ma, and low byte

IoXmit2: call Xmitl ;Ma, transmit one "canned" packet

*POP cx
loop repX2
call dowho ;Ma, list WhoAmI result
imp doxmt ;Ma

;transmit 256 data byte packet continuously without data pass for 10 second

;sampling

doxm3: @print XMmsg3 ;Ma

mov count,0 ;Ma, clear count
A--9

mcov vx, !JUMXMPI
push cx

inc count ;Ma
nov ax,count ;Ma
mov byte ptr pdata3[O],ah ;Ma, mark packet number on high
Mov byte ptr pdata3[lJ,al ;Ma, and low byte

JoXmit3: call Xmitl ;Ma, transmit one "canned" short packet

pop cx
loop repX3
call dowho ;Ma, list WhoAmI result
jmp doxmt ;Ma

transmit "long canned" packet continuously without data pass for one minite

doxm4: @print XMmsg4 ;Ma
jmp doxmt ;Ma

call xmitl ;send a packet
mov errcd,al
jmp uninit

dorecv:
call rcvsome ;recieve packets for till key hit
mov errcd,al

uninit:

call ResetAdapter

call fixvecs
nov al,errcd

oout: mov ah,4ch
int 21h

;tst3l endp ;Ma
tstrx2 endp ;Ma

xMitl proc near

transmit one "canned" packet
* @print XMmsg

;put our eaddr in xmit pkt
mov ax,word ptr wbf.ea
mov w6rd ptr sorca,ax
mov ax,word ptr wbf.ea+2
mov word ptr sorca+2,ax
sov axword ptr wbf.ea+4
mov word ptr sorca+4,ax

;setup for PutTxData
cmp funcnum,4d ;Ma

A-10

joCroip u tncnom, 3d ;MHa
)e et L ; Ma

cmp funcnum,2d ;Ya
je set2 ;Ma
emp count,ld ;Ma
jnz notfl ;Ma
mov dx,60h., ;req id and wait
imp short setl ;Ma

iotfl: mov dx,64h, ;req id, wait and no data pass /Ma
setl: mov sioffset CODE:xmtpk ;xmt pkt buffer

mov bxxpl~n ;set lengths
mov cx,bx
jmp setnolk ;Ma

;et2:
cmp count,ld ;Ma
jnz notf21 ;Ma
mov dx,61n ;req id and wait
jmp short seto2 ;Ma

notf2: mov dx,6'4h ;req id, wait and no data pass /Ma

;eto2: mov si,dffset CODE:xmtpk2 ;xmt pkt buffer
mov bx,xplen2 ;set lengths
mov cxb8
imp setnoTx ;Ma

set3:
cmp counE,ld ;Ma
jnz n.ot 43 ;Ma
mov dxj8oh ;req id and wait
jmp short seto3 ;Ma

iotf3: -mov dx,64h ;req id, wait and no data pass /Ma

seto3: mov si,offset CODE:xmtpk3 ;xmt pki buffer
mov bx,xplen3 ;set lengths
nov cx,bx

•set4: mov di,Offffh ;no TxProcess
;etnoTx: mov di,Offffh ;no TxProcess

call PutTxData

mov retsav,ax

@print XRmsg
@prx 4,retsav
@print crlf

mov ax,retsav
ret

tmitl endp

:cvsome proc near

following code to dump received packets for a fixed time
@print RSmsg

zhkpk:

A-Il

, ,,,/I

L epXl:
push cx Ma

inc count Ya
=ov ax,count ;Ha
nov byte ptr pda-a[O,a.h ;Ma, mark packe, nu=br on high
nov byte ptr pdata[l),aI ;M-a, and low byte

aoXmitl: call Xmitl ;.Sa, transniz one "cannedo packet

pop cx
loop repXl
call dowho ;Y-, list .o--. result
jnp doxnt ;H.a

transmit 128 data byte packet co.rtinuously with data -ass for .0 seconds

sampling.

oxm2: @print X.mnsg2 Ma

nov count,O ;M, clear count
nov funcnum,2 ;4a, run function nuber 2
Mov cx, NU.MIT

repX2:
push cx

inc count ;Ma
nov ax,count ;Ma
Mov byte ptr pdata2[0], ah ;Ma, nark packet n-uber on high
mov byte ptr pdata2[l1,al ;Ma and low byte

IoXmit2: call Xmitl ;Ma, transmit one "canned" packet

pop cx
loop repX2
call dowho ;Ya, list MhoAn! result
imp doxmt ;MaL

transmit 256-data byte packet continuously with data.pass for 20 second

sampling

Ioxm3: @print XMmsg3 ;Ha

mov count,0 ;Ha, clear count
mov funcnum,3 ;Ha, run function number 3
mov cx,NUHXMIT

repX3 :
push cx

inc count ;Ma
mov ax,count ;Ma
mov byte ptr pdata3[O, ah ;Ha, mark packet number on high
Mov byte-ptr pdata3[l], al ;Ma, and low byte

IoXmit3: call Xmitl ;Ma, transmit one "canned" short packet

-A-12

Cal, do~eno mat, li11= o~ result

zransnit "!on; canned" packet continuously without data pass for one =zn-te

-37-firint Mwzs4 3a

call xi l ;send a packet
now errcd:,al

- call rcvsc=e ;recieve packets for t2Il key hit
=ov e-rcd,al

uninit:
; *********** ** **

call ResetAdapter

call fixvecs
=ov al,errcd

-out: nov ah,4ch
int 21h

;tst3l endp ;Ma
strx! endo ;Pa

nitl proc near

transmit one "canned" packet
: @print XM.sg

;put our eaddr in xmit pkt
nov ax,word ptr wbf.ea
nov word ptr sorca,ax
mov ax,word ptr wbf.ea+2
mov. word ptr sorca+2,ax
Mov ax,word ptr wbf.ea+4
nov word ptr sorca+4,ax

;setup for PutTxData
cmp funcnum,4d ;Ha
je set4 ;Ha

cmp funcnum,3d ;Ma
je set3 ;Ha
cmp funcnum,2d ;Ma
je set2 ;Ma
cmp count,ld ;Ma
jnz notfl ;Ma
mov dx,60h ;req id and wait
jmp short seti ;Ma

otfl: mov dx,64h ;req id, wait and no data pass /Ma
A-13

;et2:
CnP count, IdIM
jAnz notf2 ;M
noV dx.60h ;rea id and w.ait
3mm short seto2 ; Fa

notnf2: nov dx,64h ;req id, -wait and no data pass /ZMa

;eto2: nov si;,offset CODE:x--tok2 ;xnt pkt buffer
noV !r/,xplen2 ;set lengths
no': cx,bx

jnp setno-Ty

set-3:
c=0 count,ld;M
jnz nctf3 3M
nov dx,60h ,.eq id and wait
j =. short seto3 ;Ma

sotf 3: nov dx,64h ,req id, wait and no data pass /1-ia

seto3: =ov si,offset CODE:x-tpkc3 ;xmt p~kt buffer
nov bx.,plen3 ;setl lengths
inc bx ;Ma, make length 256

nov cx,bx

-set4: Mov di,Offffh ;no TxProcess
jetno-1/: nov di;,Offffh ;no TxProcess

call PutTxData

mow retsav,ax

@print X~msg
@ prx 4,retsav

* @print crlf
nov ax,retsav
ret

(Mitl endp

:cvsome proc near

following code to dump received packets for a fixed time

-hpk print RSmsg

@kbdchk ;key pressed?
or al,al
jz rdbfr
imp wedone

rdbfr:
test pklock,Offh ;got a pkt?
jnz lstpkt
imp chkpk

Istpkt:

A-14

@print crlf
=Ov pklockO
inc pkcnt
jnp chkpk

lnpk:

cm pkienO
jnz pkok
@print ZPnsg
=ov pklock,O
inc pkcnt
imp chkpk

kok:

cnp pklen,256
jle d=ckl
nov pklen,256 ;limit dump to 1st 256 bytes

Imoki:
@dmprt <offset CODE:pkthd>,O,nklen
nov pklock,O
inc pkcnt
jmp cbkpk

;edone:
@print REcsg
mov ax,O ;a return code

rcvsome endp

RxProcess

RxProcess proc near

push bx
push cx

test cs:pklock,Offh
jz getp

aontget:
inc pkcount
nov cxO ;zero length (just discard)
imp goget

getp:
; At this point we could check es:di packet header data
; to make some decision on packet disposition

; lock our buffer and get packet data into it
nov cs:pklock,Offh ;lock buff
Mov cs:pkerr,O

goget:
mov ax,CODE
mov es,ax
mov di,offset CODE:pkthd ;buffer,
or dl,40h ;release buffer

A-15

=r1 cs:pkerr,ax
=oV cs:pkien~cx

olen:
pop cx
pop bx
ret

RxProcess endp

ExitRcvlnt

:xitRcvlnt proc near

iret

:xitRcvlnt endp

--- get and print WhoAml statistics -

dowho proc near

push es
xor dl,dl ;adapter 0

call WhoAml

Mov retsav,ax

@print WAnsg
@prx 4,retsav
@print crlf
mov ax,retsav
or ax,ax
jz waok
mov errcd,3
jmp uninit

Ya_ok:
mov si,di
mov di,offset CODE:wbf
push ds

push ds
push es
pop ds
pop es
mov cx,24
cld

rep movsw ;copy who buffer

pop ds,
pop es

call whodat ;print the WhoAmI data

A-16

rot
!owho eadp

--- print WhoAmI data ------------
whfodat PROC near

@prinlt W-Oomsg

*.; @dnmprt <offset CODE:wbf>,O,48

@prinlt -WOlznsg
rnov cx,6

-.re:mov bx,O

push bx
Qprx 2,<word ptr (bx+offset CODE:wbf.ea-l)>
POP bx
inc bx
loop prtea.
@print crlf

@print WO22nSg
@prx 2,<word ptr wbf.1,erl-l>
@print crlf

@prinlt W031MSg
@prx 2,<wprd ptr wbf.ver2-1>
@print crlf

@print WO4znSg
@prx 2,<word ptr wbf.ver3-l>
@print crlf

@print WO5msg
@prx 2,<waord ptr wbf.ver4-l>
@print crlf

@print WO6MSg
@prx 2,<word ptr wbf.atyp-l>
@print crlf

@print W07MSg
@prx 2,<word ptr wbf.astat-l>
@print crlf

@print W03msg
* @prx 2,<word ptr wbf.bfrs-l>

@print crlf

Oprint W09msg
@prx 2,<word ptr wbf.nxb-l>
@print crlf

@print WlOmsg
@prx 4,<word ptr wbf.sxb>

A-17

-pin W------- I

Oprx 4,-word ptr wbf.xrntcf-2-
fiprx 4,<word ptr wbf.xmtc>
@print crlf

@print W12msg
@prx 4,<word ptr wbf.xmte+2>
@prx 41<word ptr wbf.xmrte>
@print crlf

@print Wl3msg
@prx 4,<word ptr wbf.xmtto+2>
@prx 4,<word ptr wbf.xmtto>
@print crlf

@print Wl4rnsg
@prx 4,<word ptr wbf.rcvc+2>
@prx 4,<word ptr wbf.rcvc>
@print crlf

@print 14l5rsg
@prx 4,<word ptr wbf.rcvbc+2>
@prx 4,<word ptr wbf.rcvbc>
@print crlf

@print Wl6msg
@prx 4,<word ptr wbf.rcve-2>
@prx 4,<word ptr wbf.rcve>
@print crlf

@print W17msg
@prx 4,<word ptr wbf.rtc+2>
@prx 4,<word ptr wbf.rtc>
@print crlf

@print Wl8msg
@prx 2,<word ptr wbf.xfmd-l>
@print crlf

@print Wl9msg
@prx 2,<word ptr wbf.wtmd-l>
@print crlf

@print W2Omsg
@prx 4,<word ptr wbf.extp>
@print 6rlf

ret
2hodat endp

3avvecs proc near
push, ds
push es
push si
push di
push cx

A-18

Mov ds,ax
nov cx,22h*2 ;,vectors 0 - 21h, 2 wds per
Mov di.offset CODE:vectsv
xor sisi
cld
cli

rep movsw ;save 'em all
sti

pop cx
pop di
pop si
pop es
pop ds
ret

3avvecs endp

-- - - - - - - -- - - - - --- -- -- - - - -- - - - -. --..--..

fixvecs proc near
push es
push si
push di
push cx

xor ax,ax
mov es,ax
mov cx,22h*2 ;vectors 0 - 21h, 2 wds per
mov si,ctfset CODE:vectsv
xor di,di
cld
cli

rep movsw ;restore 'em all
sti

pop cx
pop di
POP si
pop es
ret

fixvecs endp

----------------------------------.. - ------ ---- -- ---------------------.

* dmprt - produces dump listing, calling parameters are pushed on stack
(converted from a C ioutine)

; INPUTS:
; (bp+4] = data address

(bp+6] = starting address for line headers
* [bp+8] = length of data, to print
* OUTPUT:

Dump listing to stdout device

dmprt proc near

push bp
mov bp,sp
mov bx,bp
sub bx,Och ;local vars

A-19

Moy ay, (!np' J

dOO5c: sub dx,dx
soy cx,l10h

d0061: div cx
may [bp-4],ax ;lines

d0063: mov (bp-6),dx ;remn

10066 , moy word ptr [bp-8],O ;

1006b: moy word ptr fbp-Oah],O ;line

d00O70: jsp d0158

d0073:
push dx
soy dl,cr ;000d
soy ah,2
int 21h
soy dl,lf ;OOOA
mcv ah,2
int 21h
soy dl,'
soy ah,2
int 21h
soy dl,'
soy ah,2
int 21h
POP dx

soy ax,4
push ax
soy ax,(bp+6] ;adr
add ax,fbp-8] ;
push ax
call prx
add sp,4 ;0004
push dx
soy, dl,'
mnov ah,2
int 2lh
soy dl,.'
soy ah,2
int -21h
POP dx

Msov word ptr Ibp-Och],o

dOOc5: test byte ptr (bp-OchJ,3
jnz dOOd5
push dx
soy dl.'

-A-20

